FRACTION PROGRESSION MAP

Throughout the teaching of fractions, three key models are used in order to provide a wide and varied understanding of fractions.

These include:

Area models

It is important to vary these images using representations that challenge pupils thinking and understanding.

Discrete models

Linear Models

Where possible, links are made to real life and measures

Some images have been copied from NCETM PD materials
https://www.ncetm.org.uk/teaching-for-mastery/mastery-materials/primary-mastery-professional-development/

Objective, Strategy \& Key Vocabulary	Area	Discrete	Linear
Name the fractions one-half, onequarter and onethird in relation to a length, shape or set of objects.	Children explore the concept of something being less than 1 but more than zero. They begin with real objects exploring whether twp parts are equal or not. half They move to exploring half and not half of shapes half It has been split in half because there are two equal parts.	Now children explore this same concept using small sets of objects. not half	And finally using linear objects such as string or ribbon.
	Once children have explored one half, they are then introduced to one-quarter as being one of four equal parts and similarly onethird as being one of three equal parts.		

Year 1

[^0]| Objective, strategy
 \& Key Vocabulary | Concrete/pictorial | | Name | Written notation |
| :--- | :--- | :--- | :--- | :--- |
| Read and write the
 fraction notation
 $\frac{1}{2}$$\frac{1}{3}$ | $\frac{1}{4}$ | | | |

Year 2

January 2023

Fraction notation-taken from NCETM PD materials

Model	Say	Write	Notation
one-half	The apple has been divided...'	Write the division bar.	$\frac{1}{2}$
	'...into 2 equal parts...'	Write '2' as the denominator.	
	'...and we have 1 of the parts.'	Write '1' as the numerator.	

Model	Say	Write	Notation
one-third	The rectangle has been divided...'	Write the division bar.	$\frac{1}{3}$
	'...into 3 equal parts...'	Write ' 3 ' as the denominator.	
	'... and 1 of the parts is shaded.'	Write '1' as the numerator.	

Model	Say	Write	Notation
	The strawberries have been divided...'	Write the division bar.	$\frac{1}{4}$
	'...into 4 equal parts...'	Write '4' as the denominator.	
	\therefore... and 1 of the parts is circled.'	Write '1' as the numerator.	

January 2023

January 2023

Objective, Key Vocabulary	Area	Discrete	Linear
Understanding the relationship between the part and the whole NCETM 3.1 TP1	The story of the blind man and the elephant enables pupils to discover the relationship between the whole and the part. Message behind the story: Each of the blind men cannot identify the animal because each has only felt a part not the whole of the elephant. If England is the whole, then Lincolnshire is part of the whole.	Children progress to understanding that several parts can make up the whole. When the family is the whole, the children are part of the whole. If 5 cakes are the whole then two pink cakes are part of the whole. Hellol I'm a Teddy bear. If the teddy is the whole, then the ears are part of the whole.	Using a journey, children can talk about a whole journey and part of this journey. If the journey from Daisy's house to school is the whole, then the journey from Will's house to school is part of the whole.

Prontor
6

Objective, Strategy \& Key Vocabulary	Area	Discrete	Linear
Recreate the whole from one part. NCETM 3.1 TP4	Children are given one part and told the number of parts. They recreate the whole. This is one part or 4 equal parts. What could the whole look like? Answers could include: Opportunities for greater depth could include children finding all possibilities.	This is one part. There are 3 equal parts. Recreate the whole.	This in 14 of a piece of ribbon. Draw the whole of the ribbon. \square
Recreate the whole given several parts NCETM 3.1 TP4	Once children are confident in constructing the whole given one part, they progress to recreating the whole given several parts of the whole. Here are three parts of the whole. What could the whole look like? Answers may include:	8 sweets are two parts of the whole. What is the whole amount of sweets. 8 sweets is 2 parts 4 sweets is 1 parts 16 sweets is 4 parts which is the whole	Here are 3 parts of a line. What is the total length?

Year 3

Objective, Key Vocabulary	Area	Discrete	Linear
Recognise and write fractions of a discrete set of objects: unit fractions NCETM 3.2 TP2, 3	Children have already been introduced to fraction notation in KS1. Now they revisit this understanding the role of the numerator and denominator. They begin by revisiting unit fractions of a shape and applying understanding of written notation: When writing fractions, the fraction bar is drawn first to draw attention to the concept that the whole is being divided into equal parts. Then the denominator is written to show how many parts the whole is divided into, followed by the numerator to show how many parts are shaded.	Children they apply this understanding to identifying fractions of discrete amounts. The whole has been divided into three equal parts. Each plate is one-third of the whole. Children may explore the different ways in which the whole can be divided into equal groups, saying and writing the fraction each time. Dividing 12 counters into equal groups: 1/12	The whole is divided into 6 equal parts. One of these parts is yellow. $1 / 6$ of the cubes is yellow. The whole has been divided into 6 equal parts. Each part is one-sixth of the whole. One sixth of the whole has been cut off.

Year 3

January 2023

Objective, Key Vocabulary	Area	Discrete	Linear
Recognise and write fractions of a discrete set of Objects:	Once children are confident in identifying, recognising and writing unit fractions they apply this understanding to non-unit fractions. The whole is divided into 5 equal parts.	Children begin by working with real objects to identify the equal parts and then using the stem sentence before arriving at the notation.	The whole is divided into 8 equal parts. 3 of the parts are shaded 3 one-eighths are shaded $3 / 8$ of the whole is shaded
NCETM 3.3 TP1, 2	4 of the parts are shaded		
	4 one-eighths are shaded $4 / 5$ of the whole is shaded	There are 5 equal parts. 2 parts are blue. $\frac{2}{5}$ of the cakes are blue.	$\frac{3}{8}$ Where possible, links are made to real life and measures.
	 The whole has been divided into \qquad parts.		How many one-tenths of a metre does the ribbon measure?
	of the whole is blue. of the whole is red.		The plant measures 7 tenths of the whole metre. In height.

Objective, Key Vocabulary	Area	Discrete	Linear
If the numerator and the denominator are the same then this is equivalent to a whole. NCETM 3.3 TP 3, 6	The whole is divided into 8 equal parts. All 8 parts are shaded 8 One-eighths is the whole.	There are 12 equal parts. We have twelve twelfths. The whole egg box is full. This is one whole egg box full of eggs.	The whole has been divided into \qquad equal parts. We have \qquad of the fifths. This is equivalent to the whole.

Year 3

Objective, Strategy \& Key Vocabulary	Area	Discrete	Linear/ Volume
Understand that equal fractional parts do not need to look the same.	Children are exposed to quarters shown in different ways. They may explore how they can be divided a shape into quarters through paper folding and shading.	What is the same/ different about these plates of biscuits?	Where possible, connections are made to real life and measures. Here, practical investigation of volume using different containers can be useful. - Rice - Liquid
NCETM 3.2 TP4	Useful practical demonstrations may include 2 pieces of different coloured A4 paper, with one folded in half.		

Year 3

Objective, Key Vocabulary	Notes	Pictorial	Stem sentences/ Abstract
Recognise using diagrams that some fractions may be expressed in more than one way. (introducing equivalence)	When encountering equivalence in year 3 , focus is given to raising an awareness that some representations may be expressed in more than one way. Children are not introduced to the idea of simplification or converting fractions at this stage.	What fraction is shaded?	The whole is divided into twelve equal parts, and nine of them are shaded. $\frac{9}{12}$ The whole is divided into four equal parts, and three of them are shaded. $\frac{3}{4}$ Nine twelfths is equivalent to three quarters. $\frac{9}{12}=\frac{3}{4}$

Objective, Key Vocabulary	Notes	Discrete	Linear
Show using diagrams that some fractions may be expressed in more than one way. (introducing equivalence) NC Recognise and show, using diagrams, equivalent fractions with small denominators.	Pupils work with examples to show how fractions may be expressed in more than one way.	How else can you express this fraction?	What fraction of the line is shaded? Can you see more than one?

Year 3

Objective, Strategy \& Key Vocabulary
Adding \& sub- tracting fractions with the same de- nominator within one whole.
It is helpful to count in unit fractions:
Repeated addition
of a unit fraction
results in a non-unit
fraction-counting
in unit fractions.

Objective, Strategy \& Key Vocabulary
Adding \& sub- tracting fractions with the same de- nominator within one whole.
Repeated addition of a unit fraction results in a non-unit fraction-adding like unit fractions NCETM 3.4 TP 1,2, 3,4
Compare and order unit fractions with the same denomi- nator. NCETM 3.2 TP 5

Objective, strategy \& Key Vocabulary	Measures	
Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 Links to measures are made including capacity, mass and length	The litre jugis divided into ten equal parts and there is water up to the seventh mark; this is seven tenths of a litre.' Measures - mass:	Measures-length: one tenth of a metre

Year 3

January 2023

Objective, Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Identify, name and write equivalent fractions of a given fraction, including tenths and hundredths NCETM 3.7 TP1	The whole is divided into 4 equal parts and one part is circled The whole is divided into 12equal parts and three parts are circled	$\frac{1}{4}=\frac{3}{12}$ $\frac{1}{4}=\frac{3}{12}$	$\frac{1}{4}=\frac{3}{12}$
			$\frac{1}{4}=\frac{2}{8}=\frac{3}{12}=\frac{4}{16}$

Year 4

Objective, Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Understand mixed numbers as parts and wholes NCETM 3.5 TP1	How many oranges? There are two whole oranges and one half orange. There are two and a half oranges altogether		$1+\frac{1}{2}=1 \frac{1}{2}$
Compare and order unit fractions. NCETM 3.2 TP 5 Important teaching point- When comparing fractions, the whole has to be the same.	Using pieces of ribbon or paper strips, children create a fraction wall to investigate which lines have the fewest/most parts and then label compare unit fractions. - Which coloured strip has the most equal parts? - Which coloured strip has the fewest equal parts?'	Move to diagrams of fraction walls	$\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}>\frac{1}{10}$

January 2023

Objective, Strategy \& Key Vocabulary	Area and Linear
Add and subtract fractions with the same denominator. (over 1 whole)	Pie/Linear diagrams used to support $\frac{4}{5}+\frac{3}{5}=1 \frac{2}{5}$
	$\frac{5}{6}+\frac{4}{6}$ $\frac{5}{6}+\overbrace{\frac{1}{6}}^{\frac{4}{6}}$ $\frac{5}{6}+\frac{4}{6}=1 \frac{3}{6}$

Year 4

Year 4

Objective, Strategy \& Key Vocabulary	Measures
Count up and down in hundredths; recognise that hundredths arise when dividing an object by a hundred and dividing tenths by ten. Explore hundredths in measures including capacity and	Measures context:
length.	The litre jug is divided into one humdred equal parts and there is water up to the seventy-fifth mark: this is seventy-five hundredths of a litre.' The whole is one metre. One metre is divided into one hundred centimetres. One centimetre is equal to one hundredth of a metre.'

January 2023

Objective, Strategy \& Key Vocabulary	Area	Discrete	Linear					
Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number Chn are now ready to make the link to finding a unit fraction of a quantity. NCETM 3.3 TP2	$\frac{1}{6} \text { of } 12$	$\underbrace{12}$						
		O0,00100100100100	2	2	2	2	2	2
		$2 \quad 2 l_{2} l_{2} l_{2}$	Each part is $\frac{1}{6}$ of the whole.					
	This use of x to replace 'of' is then introduced.$\frac{1}{6} \text { of } 12=\frac{1}{6} \times 12$		$\begin{aligned} & \frac{1}{6} \\ & \frac{1}{4} \times \end{aligned}$	2 is				
			24					
						6		
			$24 \div 4=6$ So, $\frac{1}{4} \times 24=6$ Children are reminded of commutat $\frac{1}{4} \times 24$ and $24 \times \frac{1}{4}$.					
			The link with mental division is made in order to find unit fractions of a quantity without the use of short division.$\frac{1}{8} \text { of } 24=3 \quad \frac{1}{7} \text { of } 28=4$					

Year 4

Objective, Strategy \& Key Vocabulary	Methods supported by diagrams (if needed)
Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number Move to finding nonunit fractions of a quantity NCETM 3.6 TP 3,4,5	$\frac{3}{4} \times 24=$24 6 6 6 6 $\begin{aligned} & 24 \div 4=6 \\ & \frac{1}{4} \times 24=6 \\ & \frac{3}{4} \times 24=18 \end{aligned}$ 'To calculate $\frac{3}{4} \times 24$, find $\frac{1}{4}$ of 24 and then multiply by 3 .' It is vital that children solve questions which expose them further to the commutative rule. $\begin{array}{ll} 24 \times \frac{2}{5} & \frac{7}{8} \times 56 \\ 30 \times \frac{4}{6} & \frac{2}{3} \times 13 \end{array}$

	Area	Linear	Abstract

Year 5

Objective, Strategy \& Key Vocabulary	Real Life/Concrete	Linear	Abstract
Recognise mixed numbers and improper fractions and NCETM 3.5 TP4	How many oranges altogether? fraction bar $\overline{2}$ each whole orange splits into 2 parts $\frac{5}{2} \underset{\substack{\text { each whole orange } \\ \text { splits into } 2 \text { parts }}}{ }$		$\frac{5}{2}$
Convert from mixed numbers to improper fractions NCETM 35 TP 5	There are \qquad groups of four-quarters which is -_quarters and \qquad more quarters, so that is -quarters.	$\frac{4}{4}$ $\frac{8}{4}$ $\frac{12}{4}$ $\frac{16}{4}$ 1 2 3 4	$4 \frac{1}{4}=\frac{17}{4}$ Pupils work towards the generalisation: We can: - Multiply the whole number by the denominator

Objective, Strategy \& Key Vocabulary	Pictorial		Abstract	
Convert from Improper fractions to mixed num-	Counters can be marked with dry wipe pens to represent unit fractions. Our unit is eighths so we will be thinking about groups of eight. There are $\frac{8}{8}$ in one whole.	Improper fraction	Prompt question	Mixed number
bers. NCETM 3.5 TP5		$\frac{21}{10}$	How many groups of $\frac{10}{10}$ in $\frac{21}{10}$? (2 groups and 1 moretenth.)	$2 \frac{1}{10}$
NCETM 3.5 TP5		$\frac{21}{9}$	How many groups of $\frac{3}{9}$ in $\frac{21}{9}$? (2 groups and 3 more ninths.)	$2 \frac{3}{9}$
		$\frac{21}{8}$	How many groups of $\frac{3}{8}$ in $\frac{21}{8}$? (2 groups and 5 more eighths.)	$2 \frac{8}{8}$
Write mathematical statements >1 as a mixed number (e.g. $2 / 5$ $+4 / 5=6 / 5=11 / 5)$		$\frac{7}{5}+\frac{3}{5}=\frac{10}{5}=2$		
NCETM 3.5 TP3				

Year 5

Objective, Strategy \& Key Vocabulary	Area	Discrete	Linear
Multiply proper fractions by whole numbers, supported by materials and diagrams. NCETM 3.6 TP1 Pupils have previously looked at finding fraction of a quantity and how 'of' can be replaced with x in year 4.	First investigate this with unit fractions Then move to non-unit fractions $\begin{aligned} & \frac{3}{8}+\frac{3}{8}=\frac{3}{8}=3 \times \frac{3}{8} \\ & \frac{3}{8}+\frac{3}{8}=\frac{3}{8}=\frac{3}{8} \times 3 \\ & \frac{1}{6} \frac{1}{6} \frac{1}{9} \\ & \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \end{aligned}$	Children are reminded of the commutative aspect of multiplication which also applies to fractions. $\begin{aligned} & \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=4 \times \frac{1}{8} \\ & \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8} \times 4 \end{aligned}$	$\begin{aligned} & \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}==\frac{1}{5} \times 4 \\ & \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=4 \times \frac{1}{5} \end{aligned}$ $\begin{aligned} & \frac{2}{10}+\frac{2}{10}+\frac{2}{10}=3 \times \frac{2}{10} \\ & \frac{2}{10}+\frac{2}{10}+\frac{2}{10}=\frac{2}{10} \times 3 \end{aligned}$ $\begin{aligned} & \frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}=\frac{8}{9} \\ & 4 \times \frac{2}{9}=\frac{8}{9} \\ & \frac{2}{9} \times 4=\frac{8}{9} \end{aligned}$

Year 5

January 2023

Objective, Strategy \& Key Vocabulary	Real Life/Pictorial	Abstract
Multiply mixed numbers by whole numbers, supported by materials and diagrams. NCETM 3.5 TP 1 \& 2	$3 \frac{1}{5}$ of ribbon is needed to decorate one wedding cake. How much is needed for 4 cakes? \square	$\begin{aligned} 3 \mathrm{~m} \times 4 & =12 \mathrm{~m} \\ \frac{1}{5} \mathrm{~m} \times 4 & =\frac{4}{5} \mathrm{~m} \\ 12 \mathrm{~m}+\frac{4}{5} \mathrm{~m} & =12 \frac{4}{5} \mathrm{~m} \end{aligned}$ Example 1: $3 \frac{1}{5} \times 4=\underbrace{3 \times 4}_{12}+\underbrace{\frac{1}{5} \times 4}_{\frac{4}{5}}=12 \frac{4}{5}$ Example 2 $\left.\begin{array}{l} 3 \frac{1}{5} \times 4=12 \frac{4}{5} \\ 3 \times 4=12 \\ \frac{1}{5} \times 4=\frac{4}{5} \end{array}\right)$ Example 3: $\overbrace{12}^{3 \frac{1}{5} \times 4} \times \frac{4}{\times 4}=12 \frac{4}{5}$

Objective, Strategy \& Key Vocabulary	Abstract	
Add and subtract mixed numbers, using the concept of equivalent fractions	Method 1 $\begin{aligned} & 3 \frac{1}{2}+1 \frac{1}{6} \\ & \frac{1}{6} \\ & \frac{3}{3}+1=4 \\ & \frac{3}{6}+\frac{1}{6}=\frac{4}{6} \\ & 4+\frac{4}{6}=4 \frac{4}{6} \end{aligned}$ Method 1 (only effective when breaking the whole not > needed) $\begin{aligned} & 2 \frac{1}{2}-1 \frac{2}{5} \\ & 2-1=1 \\ & \frac{1}{2}-\frac{2}{5} \\ & 1 \\ & \frac{5}{10}-\frac{4}{10}=\frac{1}{10} \end{aligned}$	Method 2 $\begin{aligned} & 3 \frac{1}{2}+1 \frac{1}{6} \\ & \frac{7}{2}+\frac{7}{6} \\ & \frac{1}{6}+\frac{7}{6}=\frac{28}{6}=4 \frac{4}{6} \end{aligned}$ Method 2 $\begin{aligned} & 2 \frac{1}{2}-1 \frac{2}{5} \\ & \frac{1}{2}-\frac{7}{5} \\ & \frac{25}{10}-\frac{14}{10}=\frac{11}{10}=1 \frac{1}{10} \end{aligned}$

Objective, Strategy \& Key Vocabulary	Pictorial	Abstract
Compare and order fractions, including fractions >1. Compare using common denominators NCETM 3.8 TP5	Jack has painted $\frac{2}{3}$ of his wall. Jane has painte $\frac{3}{5}$ of his wall. Who has painted a greater proportion of their wall? Jack Jane Ask pupils to visualise where these fractions are on the number line.	Children find a common denominator by looking for a denominator that is a multiple of both 3 and 8 .

Year 6

January 2023

January 2023

Objective, Strategy \& Key Vocabulary	Pictorial	Abstract
Divide proper fractions by whole numbers (e.g. $1 / 3 \div 2=1 / 6) \text {. }$ Continued....	If the numerator is a factor of the whole number, a more efficient strategy is used: $\frac{6}{8} \div 2$	$\frac{6}{8} \div 2=\frac{3}{8}$
	1 $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$1 $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{3}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$1 $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{6}{8}$ is six one-eighths. If we dividesix one-eighths into two equal groups then each of the groups has threeoneeighths or $\frac{3}{8}$ in it.' ' 6 things divided between 2 , is 3 things'	

『き〇

[^0]: January 2023

